Details

Biosurfactants for a Sustainable Future


Biosurfactants for a Sustainable Future

Production and Applications in the Environment and Biomedicine
1. Aufl.

von: Hemen Sarma, Majeti Narasimha Vara Prasad

179,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 16.04.2021
ISBN/EAN: 9781119671053
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Biosurfactants for a Sustainable Future</b> <p><b>Explore the state-of-the-art in biosurfactant technology and its applications in environmental remediation, biomedicine, and biotechnology</b><p><i>Biosurfactants for a Sustainable Future</i> explores recent developments in biosurfactants and their use in a variety of cutting-edge applications. The book opens a window on the rapid development of microbiology by explaining how microbes and their products are used in advanced medical technology and in the sustainable remediation of emerging environmental contaminants.<p>The book emphasizes the different techniques that are used for the production of biosurfactants from microorganisms and their characterization. Various aspects of biosurfactants, including structural characteristics, developments, production, bio-economics and their sustainable use in the environment and biomedicine, are addressed, and the book also presents metagenomic strategies to facilitate the discovery of novel biosurfactants producing microorganisms. Readers will benefit from the inclusion of:<ul><li>A thorough introduction to the state-of-the-art in biosurfactant technology, techniques, and applications</li><li>An exploration of biosurfactant enhanced remediation of sediments contaminated with organics and inorganics</li><li>A discussion of perspectives for biomedical and biotechnological applications of biosurfactants</li><li>A review of the antiviral, antimicrobial, and antibiofilm potential of biosurfactants against multi-drug-resistant pathogens.</li><li>An examination of biosurfactant-inspired control of methicillin-resistant <i>Staphylococcus aureus</i></li></ul><p>Perfect for academic researchers and scientists working in the petrochemical industry, pharmaceutical industry, and in the agroindustry, <i>Biosurfactants for a Sustainable Future</i> will also earn a place in the libraries of scientists working in environmental biotechnology, environmental science, and biomedical engineering.
<p>List of Contributors xii</p> <p>Preface xvii</p> <p><b>1 Introduction to Biosurfactants 1</b><br /><i>Jos</i><i>é</i><i> V</i><i>á</i><i>zquez Tato, Julio A. Seijas, M. Pilar V</i><i>á</i><i>zquez-Tato, Francisco Meijide,Santiago de Frutos, Aida Jover, Francisco Fraga, and Victor H. Soto</i></p> <p>1.1 Introduction and Historical Perspective 1</p> <p>1.2 Micelle Formation 5</p> <p>1.3 Average Aggregation Numbers 14</p> <p>1.4 Packing Properties of Amphiphiles 18</p> <p>1.5 Biosurfactants 20</p> <p>1.6 Sophorolipids 25</p> <p>1.7 Surfactin 28</p> <p>1.8 Final Comments 31</p> <p>Acknowledgement 32</p> <p>References 32</p> <p><b>2 Metagenomics Approach for Selection of Biosurfactant Producing Bacteria from Oil Contaminated Soil: An Insight Into Its Technology 43<br /></b><i>Nazim F. Islam and Hemen Sarma</i></p> <p>2.1 Introduction 43</p> <p>2.2 Metagenomics Application: A State-of-the-Art Technique 44</p> <p>2.3 Hydrocarbon-Degrading Bacteria and Genes 46</p> <p>2.4 Metagenomic Approaches in the Selection of Biosurfactant-Producing Microbes 47</p> <p>2.5 Metagenomics with Stable Isotope Probe (SIP) Techniques 48</p> <p>2.6 Screening Methods to Identify Features of Biosurfactants 50</p> <p>2.7 Functional Metagenomics: Challenge and Opportunities 52</p> <p>2.8 Conclusion 53</p> <p>Acknowledgements 54</p> <p>References 54</p> <p><b>3 Biosurfactant Production Using Bioreactors from Industrial Byproducts 59<br /></b><i>Arun Karnwal</i></p> <p>3.1 Introduction 59</p> <p>3.2 Significance of the Production of Biosurfactants from Industrial Products 60</p> <p>3.3 Factors Affect Biosurfactant Production in Bioreactor 61</p> <p>3.4 Microorganisms 61</p> <p>3.5 Bacterial Growth Conditions 63</p> <p>3.6 Substrate for Biosurfactant Production 65</p> <p>3.7 Conclusions 71</p> <p>Acknowledgement 71</p> <p>References 72</p> <p><b>4 Biosurfactants for Heavy Metal Remediation and Bioeconomics 79<br /></b><i>Shalini Srivastava, Monoj Kumar Mondal, and Shashi Bhushan Agrawal</i></p> <p>4.1 Introduction 80</p> <p>4.2 Concept of Surfactant and Biosurfactant for Heavy Metal Remediation 81</p> <p>4.3 Mechanisms of Biosurfactant–Metal Interactions 82</p> <p>4.4 Substrates Used for Biosurfactant Production 82</p> <p>4.5 Classification of Biosurfactants 85</p> <p>4.6 Types of Biosurfactants 85</p> <p>4.7 Factors Influencing Biosurfactants Production 88</p> <p>4.8 Strategies for Commercial Biosurfactant Production 89</p> <p>4.9 Application of Biosurfactant for Heavy Metal Remediation 90</p> <p>4.10 Bioeconomics of Metal Remediation Using Biosurfactants 93</p> <p>4.11 Conclusion 94</p> <p>References 94</p> <p><b>5 Application of Biosurfactants for Microbial Enhanced Oil Recovery (MEOR) 99<br /></b><i>Jéssica Correia, Lígia R. Rodrigues, José A. Teixeira, and Eduardo J. Gudiña</i></p> <p>5.1 Energy Demand and Fossil Fuels 99</p> <p>5.2 Microbial Enhanced Oil Recovery (MEOR) 101</p> <p>5.3 Mechanisms of Surfactant Flooding 102</p> <p>5.4 Biosurfactants: An Alternative to Chemical Surfactants to Increase Oil Recovery 103</p> <p>5.5 Biosurfactant MEOR: Laboratory Studies 104</p> <p>5.6 Field Assays 112</p> <p>5.7 Current State of Knowledge, Technological Advances, and Future Perspectives 113</p> <p>Acknowledgements 114</p> <p>References 114</p> <p><b>6 Biosurfactant Enhanced Sustainable Remediation of Petroleum Contaminated Soil 119<br /></b><i>Pooja Singh, Selvan Ravindran, and Yogesh Patil</i></p> <p>6.1 Introduction 119</p> <p>6.2 Microbial-Assisted Bioremediation of Petroleum Contaminated Soil 121</p> <p>6.3 Hydrocarbon Degradation and Biosurfactants 122</p> <p>6.4 Soil Washing Using Biosurfactants 124</p> <p>6.5 Combination Strategies for Efficient Bioremediation 126</p> <p>6.6 Biosurfactant Mediated Field Trials 129</p> <p>6.7 Limitations, Strategies, and Considerations of Biosurfactant-Mediated</p> <p>Petroleum Hydrocarbon Degradation 130</p> <p>6.8 Conclusion 132</p> <p>References 133</p> <p><b>7 Microbial Surfactants are Next-Generation Biomolecules for Sustainable Remediation of Polyaromatic Hydrocarbons 139<br /></b><i>Punniyakotti Parthipan, Liang Cheng, Aruliah Rajasekar, and Subramania Angaiah</i></p> <p>7.1 Introduction 139</p> <p>7.2 Biosurfactant-Enhanced Bioremediation of PAHs 144</p> <p>7.3 Microorganism’s Adaptations to Enhance Bioavailability 151</p> <p>7.4 Influences of Micellization on Hydrocarbons Access 151</p> <p>7.5 Accession of PAHs in Soil Texture 152</p> <p>7.6 The Negative Impact of Surfactant on PAH Degradations 152</p> <p>7.7 Conclusion and Future Directions 153</p> <p>References 153</p> <p><b>8 Biosurfactants for Enhanced Bioavailability of Micronutrients in Soil: A Sustainable Approach 159<br /></b><i>Siddhartha Narayan Borah, Suparna Sen, and Kannan Pakshirajan</i></p> <p>8.1 Introduction 159</p> <p>8.2 Micronutrient Deficiency in Soil 161</p> <p>8.3 Factors Affecting the Bioavailability of Micronutrients 161</p> <p>8.4 Effect of Micronutrient Deficiency on the Biota 163</p> <p>8.5 The Role of Surfactants in the Facilitation of Micronutrient Biosorption 166</p> <p>8.6 Surfactants 166</p> <p>8.7 Conclusion 173</p> <p>References 174</p> <p><b>9 Biosurfactants: Production and Role in Synthesis of Nanoparticles for Environmental Applications 183<br /></b><i>Ashwini N. Rane, S.J. Geetha, and Sanket J. Joshi</i></p> <p>9.1 Nanoparticles 183</p> <p>9.2 Synthesis of Nanoparticles 184</p> <p>9.3 Biosurfactants 187</p> <p>9.4 Biosurfactant Mediated Nanoparticles Synthesis 191</p> <p>9.5 Challenges in Environmental Applications of Nanoparticles and Future Perspectives 196</p> <p>Acknowledgements 197</p> <p>References 197</p> <p><b>10 Green Surfactants: Production, Properties, and Application in Advanced Medical Technologies 207<br /></b><i>Ana María Marqués, Lourdes Pérez, Maribel Farfán, and Aurora Pinazo</i></p> <p>10.1 Environmental Pollution and World Health 207</p> <p>10.2 Amino Acid-Derived Surfactants 208</p> <p>10.3 Biosurfactants 213</p> <p>10.4 Antimicrobial Resistance 219</p> <p>10.5 Catanionic Vesicles 223</p> <p>10.6 Biosurfactant Functionalization: A Strategy to Develop Active Antimicrobial Compounds 234</p> <p>10.7 Conclusions 235</p> <p>References 235</p> <p><b>11 Antiviral, Antimicrobial, and Antibiofilm Properties of Biosurfactants: Sustainable Use in Food and Pharmaceuticals 245<br /></b>Kenia Barrantes, Juan José Araya, Luz Chacón, Rolando Procupez-Schtirbu, Fernanda Lugo, Gabriel Ibarra, and Víctor H. Soto</p> <p>11.1 Introduction 245</p> <p>11.2 Antimicrobial Properties 246</p> <p>11.3 Biofilms 252</p> <p>11.4 Antiviral Properties 255</p> <p>11.5 Therapeutic and Pharmaceutical Applications of Biosurfactants 256</p> <p>11.6 Biosurfactants in the Food Industry: Quality of the Food 258</p> <p>11.7 Conclusions 260</p> <p>Acknowledgements 261</p> <p>References 261</p> <p><b>12 Biosurfactant-Based Antibiofilm Nano Materials 269<br /></b><i>Sonam Gupta</i></p> <p>12.1 Introduction 269</p> <p>12.2 Emerging Biofilm Infections 270</p> <p>12.3 Challenges and Recent Advancement in Antibiofilm Agent Development 272</p> <p>12.4 Impact of Extracellular Matrix and Their Virulence Attributes 273</p> <p>12.5 Role of Indwelling Devices in Emerging Drug Resistance 274</p> <p>12.6 Role of Physiological Factors (Growth Rate, Biofilm Age, Starvation) 274</p> <p>12.7 Impact of Efflux Pump in Antibiotic Resistance Development 275</p> <p>12.8 Nanotechnology-Based Approaches to Combat Biofilm 276</p> <p>12.9 Biosurfactants: A Promising Candidate to Synthesize Nanomedicines 277</p> <p>12.10 Synthesis of Nanomaterials 278</p> <p>12.11 Self-Nanoemulsifying Drug Delivery Systems (SNEDDs) 282</p> <p>12.12 Biosurfactant-Based Antibiofilm Nanomaterials 283</p> <p>12.13 Conclusions and Future Prospects 283</p> <p>Acknowledgement 285</p> <p>References 285</p> <p><b>13 Biosurfactants from Bacteria and Fungi: Perspectives on Advanced Biomedical Applications 293<br /></b><i>Rashmi Rekha Saikia, Suresh Deka, and Hemen Sarma</i></p> <p>13.1 Introduction 293</p> <p>13.2 Biomedical Applications of Biosurfactants: Recent Developments 295</p> <p>13.3 Conclusion 307</p> <p>Acknowledgements 307</p> <p>References 307</p> <p><b>14 Biosurfactant-Inspired Control of Methicillin-Resistant <i>Staphylococcus aureus </i>(MRSA) 317<br /></b><i>Amy R. Nava</i></p> <p>14.1 <i>Staphylococcus aureus</i>, MRSA, and Multidrug Resistance 317</p> <p>14.2 Biosurfactant Types Commonly Utilized Against <i>S. aureus </i>and Other Pathogens 318</p> <p>14.3 Properties of Efficient Biosurfactants Against MRSA and Bacterial Pathogens 319</p> <p>14.4 Uses for Biosurfactants 320</p> <p>14.5 Biosurfactants Illustrating Antiadhesive Properties against MRSA Biofilms 320</p> <p>14.6 Biosurfactants with Antibiofilm and Antimicrobial Properties 322</p> <p>14.7 Media, Microbial Source, and Culture Conditions for Antibiofilm and Antimicrobial Properties 323</p> <p>14.8 Novel Synergistic Antimicrobial and Antibiofilm Strategies Against MRSA and <i>S. aureus </i>326</p> <p>14.9 Novel Potential Mechanisms of Antimicrobial and Antibiofilm Properties 328</p> <p>14.10 Conclusion 330</p> <p>References 332</p> <p><b>15 Exploiting the Significance of Biosurfactant for the Treatment of Multidrug-Resistant Pathogenic Infections 339<br /></b><i>Sonam Gupta and Vikas Pruthi</i></p> <p>15.1 Introduction 339</p> <p>15.2 Microbial Pathogenesis and Biosurfactants 340</p> <p>15.3 Bio-Removal of Antibiotics Using Probiotics and Biosurfactants Bacteria 342</p> <p>15.4 Antiproliferative, Antioxidant, and Antibiofilm Potential of Biosurfactant 343</p> <p>15.5 Wound Healing Potential of Biosurfactants 344</p> <p>15.6 Conclusion and Future Prospects 345</p> <p>References 346</p> <p><b>16 Biosurfactants Against Drug-Resistant Human and Plant Pathogens: Recent Advances 353<br /></b><i>Chandana Malakar and Suresh Deka</i></p> <p>16.1 Introduction 353</p> <p>16.2 Environmental Impact of Antibiotics 354</p> <p>16.3 Pathogenicity of Antibiotic-Resistant Microbes on Human and Plant Health 356</p> <p>16.4 Role of Biosurfactants in Combating Antibiotic Resistance: Challenges and Prospects 360</p> <p>16.5 Conclusion 364</p> <p>Acknowledgements 365</p> <p>References 365</p> <p><b>17 Surfactant- and Biosurfactant-Based Therapeutics: Structure, Properties, and Recent Developments in Drug Delivery and Therapeutic Applications 373<br /></b><i>Anand K. Kondapi</i></p> <p>17.1 Introduction 374</p> <p>17.2 Determinants and Forms of Surfactants 374</p> <p>17.3 Structural Forms of Surfactants 377</p> <p>17.4 Drug Delivery Systems 381</p> <p>17.5 Different Types of Biosurfactants Used for Drug Delivery 384</p> <p>17.6 Conclusions 391</p> <p>References 392</p> <p><b>18 The Potential Use of Biosurfactants in Cosmetics and Dermatological Products: Current Trends and Future Prospects 397<br /></b><i>Zarith Asyikin Abdul Aziz, Siti Hamidah Mohd Setapar, Asma Khatoon, and Akil Ahmad</i></p> <p>18.1 Introduction 397</p> <p>18.2 Properties of Biosurfactants 399</p> <p>18.3 Biosurfactant Classifications and Potential Use in Cosmetic Applications 401</p> <p>18.4 Dermatological Approach of Biosurfactants 406</p> <p>18.5 Cosmetic Formulation with Biosurfactant 409</p> <p>18.6 Safety Measurement Taken for Biosurfactant Applications in Dermatology and Cosmetics 412</p> <p>18.7 Conclusion and Future Perspective 415</p> <p>Acknowledgement 415</p> <p>References 415</p> <p><b>19 Cosmeceutical Applications of Biosurfactants: Challenges and Prospects 423<br /></b><i>Káren Gercyane Oliveira Bezerra and Leonie Asfora Sarubbo</i></p> <p>19.1 Introduction 423</p> <p>19.2 Cosmeceutical Properties of Biosurfactants 424</p> <p>19.3 Other Activities 429</p> <p>19.4 Application Prospects 432</p> <p>19.5 Biosurfactants in the Market 433</p> <p>19.6 Challenges and Conclusion 434</p> <p>References 436</p> <p><b>20 Biotechnologically Derived Bioactive Molecules for Skin and Hair-Care Application 443<br /></b><i>Suparna Sen, Siddhartha Narayan Borah, and Suresh Deka</i></p> <p>20.1 Introduction 443</p> <p>20.2 Surfactants in Cosmetic Formulation 445</p> <p>20.3 Biosurfactants in Cosmetic Formulations 445</p> <p>20.4 Conclusion 457</p> <p>References 457</p> <p><b>21 Biosurfactants as Biocontrol Agents Against Mycotoxigenic Fungi 465<br /></b><i>Ana I. Rodrigues, Eduardo J. Gudi</i><i>ñ</i><i>a, Jos</i><i>é</i><i> A. Teixeira, and L</i><i>í</i><i>gia R. Rodrigues</i></p> <p>21.1 Mycotoxins 465</p> <p>21.2 Aflatoxins 466</p> <p>21.3 Deoxynivalenol 467</p> <p>21.4 Fumonisins 468</p> <p>21.5 Ochratoxin A 468</p> <p>21.6 Patulin 470</p> <p>21.7 Zearalenone 470</p> <p>21.8 Prevention and Control of Mycotoxins 471</p> <p>21.9 Biosurfactants 472</p> <p>21.10 Glycolipids 473</p> <p>21.11 Lipopeptides 474</p> <p>21.12 Antifungal Activity of Glycolipid Biosurfactants 474</p> <p>21.13 Antifungal and Antimycotoxigenic Activity of Lipopeptide Biosurfactants 475</p> <p>21.14 Opportunities and Perspectives 482</p> <p>Acknowledgements 483</p> <p>References 483</p> <p><b>22 Biosurfactant-Mediated Biocontrol of Pathogenic Microbes of Crop Plants 491<br /></b><i>Madhurankhi Goswami and Suresh Deka</i></p> <p>22.1 Introduction 491</p> <p>22.2 Biosurfactant: Properties and Types 492</p> <p>22.3 Biosurfactant in Agrochemical Formulations for Sustainable Agriculture 502</p> <p>22.4 Biosurfactants for a Greener and Safer Environment 503</p> <p>22.5 Conclusion 503</p> <p>References 504</p> <p>Index 510</p>
<p><b>Hemen Sarma</b> is Assistant Professor at Nanda Nath Saikia College in Assam, India. His research focus is on plant- microbiome interactions, biosurfactants, persistent organic and inorganic pollutants, sustainable remediation, molecular breeding, CRISPR/cas9 gene editing and nanobiotechnology.</p><p><b>Majeti Narasimha Vara Prasad</b> is Emeritus Professor in the School of Life Sciences at the University of Hyderabad in India. He has published over 216 papers in scholarly journals and edited 34 books. He received his doctorate in Botany from Lucknow University, India in 1979. Based on an independent study by Stanford University scientists in 2020, he figured in the top 2% of scientists from India, ranked number 1 in Environmental Sciences (116 in world).</p>
<p><b>Explore the state-of-the-art in biosurfactant technology and its applications in environmental remediation, biomedicine, and biotechnology</b></p><p><i>Biosurfactants for a Sustainable Future</i> explores recent developments in biosurfactants and their use in a variety of cutting-edge applications. The book opens a window on the rapid development of microbiology by explaining how microbes and their products are used in advanced medical technology and in the sustainable remediation of emerging environmental contaminants.</p><p>The book emphasizes the different techniques that are used for the production of biosurfactants from microorganisms and their characterization. Various aspects of biosurfactants, including structural characteristics, developments, production, bio-economics and their sustainable use in the environment and biomedicine, are addressed, and the book also presents metagenomic strategies to facilitate the discovery of novel biosurfactants producing microorganisms. Readers will benefit from the inclusion of:</p><ul><li>A thorough introduction to the state-of-the-art in biosurfactant technology, techniques, and applications</li><li>An exploration of biosurfactant enhanced remediation of sediments contaminated with organics and inorganics</li><li>A discussion of perspectives for biomedical and biotechnological applications of biosurfactants</li><li>A review of the antiviral, antimicrobial, and antibiofilm potential of biosurfactants against multi-drug-resistant pathogens.</li><li>An examination of biosurfactant-inspired control of methicillin-resistant <i>Staphylococcus aureus</i></li></ul><p>Perfect for academic researchers and scientists working in the petrochemical industry, pharmaceutical industry, and in the agroindustry, <i>Biosurfactants for a Sustainable Future</i> will also earn a place in the libraries of scientists working in environmental biotechnology, environmental science, and biomedical engineering.</p>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €