Details

Biotechnologies of Crop Improvement, Volume 3


Biotechnologies of Crop Improvement, Volume 3

Genomic Approaches

von: Satbir Singh Gosal, Shabir Hussain Wani

149,79 €

Verlag: Springer
Format: PDF
Veröffentl.: 09.08.2018
ISBN/EAN: 9783319947464
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even beartificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen “case studies of important plant crops” intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.
<div>1. Marker Assisted Breeding for Abiotic Stress Tolerance in Crop Plants.-&nbsp;2. Dynamics of &nbsp;Salt Tolerance: Molecular Perspectives.-&nbsp;3. Marker Assisted Breeding for Disease Resistance in Crop Plants.-&nbsp;4. Morpho-Physiological Traits and Molecular Intricacies Associated &nbsp;with Tolerance &nbsp;to Combined Drought and Pathogen Stress in Plants.-&nbsp;5. Genome Editing for Crop Improvement: Status and Prospects.-&nbsp;6. Utilization of Wild Species for Wheat Improvement using Genomic Approaches.-&nbsp;7. Genetics and Applied Genomics of Quality Protein Maize for Food and Nutritional Security.-&nbsp;8. Genetic Improvement &nbsp;of &nbsp;Basmati &nbsp; Rice: &nbsp;Transcendence Through Molecular Breeding.-&nbsp;9. Groundnut Entered Post-Genome Sequencing Era: Opportunities and Challenges in Translating Genomic Information from Genome to Field.-&nbsp;10. Marker Assisted Breeding for Economic Traits in Common Bean.-&nbsp;11. Genomic Approaches to Enhance Stress Tolerance for Productivity Improvements in &nbsp;Pearl millet.-&nbsp;12. Genomic Assisted Enhancement in Stress Tolerance for Productivity Improvement in Sorghum.-&nbsp;13. Chickpea Genomics.-&nbsp;14. Genomic Assisted Breeding in Oilseed Brassicas.</div>
<p><b>Dr. Satbir Singh Gosal</b>&nbsp;possesses B.Sc. (Med.) from P U Chandigarh, India and M.Sc. & Ph. D. (Plant breeding) from Punjab Agricultural University, Ludhiana, India. He was awarded Fellowships by The Royal Society London and The Rockefeller Foundation (USA) for his Post Doctoral Research at the University of Nottingham, England and John Innes Centre Norwich, England. Dr Gosal has served Punjab Agricultural University in various capacities such as Professor Biotechnology, Director School of Agricultural Biotechnology, Additional Director Research and Director of Research. He has also served FAO/IAEA, Vienna, Austria and took tissue culture expert mission to Iraq during 1997. Dr Gosal has rigorous training on ‘Biosafety of GM crops' from Dan Forth Centre for Plant Science Research, St. Louis; APHIS, EPA (USDA), USTDA, Washington DC, USA. He has been an Honorary Member of the Board of Assessors, Australian Research Council, Canberra, President Punjab Academy of Sciences, elected member (Fellow) of Plant Tissue Culture Association (India), Fellow of Indian Society of Genetics and Plant Breeding.&nbsp; He is a recipient of Distinction Award by Society for the Promotion of Plant Science Research, Jaipur, India (2009), Fellow of Punjab Academy of Sciences, Advisory member of several universities/institutes in the area of biotechnology. He served as a member of Review Committee on Genetic Manipulation (RCGM) for 3 years at Department of Biotechnology (DBT), Government of India, New Delhi, and is a member of panel of experts in area of Biotechnology for National Fund for Strategic Research of Indian Council of Agricultural Research, New Delhi. &nbsp;He has participated in more than 125 national/international conferences/meetings held in India, England, Scotland, Yugoslavia, Philippines, Indonesia, Thailand, The Netherlands, Malaysia, Singapore, Austria, Iraq, P R China, Australia, Mexico, Germany and USA. He has guided more than 75 (M.Sc. & Ph.D.) students for theses research on various aspects of plant tissue culture and plant transformation. He executed more than 20 externally funded research projects funded by various national and international organizations such as Punjab State Government, ICAR, DBT, DAC NATP, FAO/IAEA, and The Rockefeller Foundation, USA. He has more than 200 research papers in refereed journals of high repute, 135 research papers in conference proceedings, several T.V./Radio talks, and 30 book chapters. He has co authored 5 Laboratory Manuals, one Text Book and 2 Edited Books.</p><p><b>Dr. Shabir Hussain Wani</b>&nbsp;is an Assistant Professor cum Scientist, Plant Breeding and Genetics, at the Mountain Research Centre for Field Crops, Khudwani Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India since May 2013 till date. He received his B.Sc. in Agriculture from BhimRao Agricultural University Agra, India, M.Sc. and Ph.D. in Genetics and Plant Breeding from Central Agricultural University, Manipur, India. His Ph.D. research fetched the first prize in North zone at National level competition in India. After obtaining his Ph.D., he worked as Research Associate in the Biotechnology Laboratory, ICAR-Central Institute of Temperate Horticulture, Rangreth Srinagar, India for two years, up to October 2011. In November 2011 he joined the Krishi Vigyan Kendra (Farm Science Centre) as Programme Coordinator (i/c) at Senapati Manipur, India. He teaches courses related to plant breeding, seed science and technology, and stress breeding. He has published more than 100 scientific papers/chapters in peer reviewed journals, and books of international and national repute. He has served as Review Editor of Frontiers in Plant Sciences, Switzerland from 2015-2017. He is an editor of SKUAST Journal of Research, and LS: An International Journal of Life Sciences. He has also edited ten books on current topics in crop Improvement published by reputed publishers including CRC press, Taylor and Francis Group, USA and Springer. He is a Fellow of the Linnean Society of London and Society for Plant Research, India. He received various awards including Young Scientist Award (Agriculture) 2015, Young Scientist Award 2016, Young Achiever award 2016 by various prestigious scientific societies. He has also worked as visiting Scientist in department of Plant Soil and Microbial Sciences, Michigan State University, USA for the year 2016-17 under the Raman Post Doctoral Research Fellowship programme sponsored by University Grants Commission, Govt. of India, New Delhi. He is a member of the Crop Science Society of America.​</p>
During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even beartificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen “case studies of important plant crops” intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.
Focuses on important field crops to highlight germplasm enhancement for developing resistance to newly emerging diseases, pests, nutrient- and water-use efficiency, root traits and improved tolerance to increasing temperature Introduces significant recent achievements in crop improvement using methods such as somaclonal variation, somatic embryogenesis, anther/pollen/embryo culture, and compressing the breeding cycle for accelerated breeding and early release of crop varieties Expert advice on the recent advances in developing saturated maps, DNA fingerprinting, marker based heterosis breeding, gene tagging, orthologous gene mapping and map based gene cloning, genome wide association studies, genomic selection and crop phenomics

Diese Produkte könnten Sie auch interessieren:

The Air Spora
The Air Spora
von: Maureen E. Lacey, Jonathan S. West
PDF ebook
223,63 €
Vegetables I
Vegetables I
von: Jaime Prohens-Tomás, Fernando Nuez
PDF ebook
287,83 €
Handbook of Poisonous and Injurious Plants
Handbook of Poisonous and Injurious Plants
von: Lewis S. Nelson, L.R. Goldfrank, Andrew Weil, Richard D. Shih, Michael J. Balick
PDF ebook
117,69 €