Details

Glutathione in Plant Growth, Development, and Stress Tolerance


Glutathione in Plant Growth, Development, and Stress Tolerance



von: Mohammad Anwar Hossain, Mohammad Golam Mostofa, Pedro Diaz-Vivancos, David J Burritt, Masayuki Fujita, Lam-Son Phan Tran

149,79 €

Verlag: Springer
Format: PDF
Veröffentl.: 21.11.2017
ISBN/EAN: 9783319666822
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

<p>Glutathione (γ-glutamyl-cysteinyl-glycine) is a ubiquitously distributed sulfurcontaining antioxidant molecule that plays key roles in the regulation of plant growth, development, and abiotic and biotic stress tolerance. It is one of the most powerful low-molecular-weight thiols, which rapidly accumulates in plant cells under stress. Recent in-depth studies on glutathione homeostasis (biosynthesis, degradation, compartmentalization, transport, and redox turnover) and the roles of glutathione in cell proliferation and environmental stress tolerance have provided new insights for plant biologists to conduct research aimed at deciphering the mechanisms associated with glutathione-mediated plant growth and stress responses, as well as to develop stress-tolerant crop plants. Glutathione has also been suggested to be a potential regulator of epigenetic modifications, playing important roles in the regulation of genes involved in the responses of plants to changing environments. The dynamic relationship between reduced glutathione (GSH) and reactive oxygen species (ROS) has been well documented, and glutathione has been shown to participate in several cell signaling and metabolic processes, involving the synthesis of protein, the transport of amino acids, DNA repair, the control of cell division, and programmed cell death. Two genes, gamma-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2), are involved in GSH synthesis, and genetic manipulation of these genes can modulate cellular glutathione levels. Any fluctuations in cellular GSH and oxidized glutathione (GSSG) levels have profound effects on plant growth and development, as glutathione is associated with the regulation of the cell cycle, redox signaling, enzymatic activities, defense gene expression, systemic acquired resistance, xenobiotic detoxification, and biological nitrogen fixation. Being a major constituent of the glyoxalase system and ascorbate-glutathione cycle, GSH helps to control multiple abiotic and biotic stress signaling pathways through the regulation of ROS and methylglyoxal (MG) levels. In addition, glutathione metabolism has the potential to be genetically or biochemically manipulated to develop stress-tolerant and nutritionally improved crop plants. Although significant progress has been made in investigating the multiple roles of glutathione in abiotic and biotic stress tolerance, many aspects of glutathione-mediated stress responses require additional research.<br/></p><p>The main objective of this volume is to explore the diverse roles of glutathione in plants by providing basic, comprehensive, and in-depth molecular information for advanced students, scholars, teachers, and scientists interested in or already engaged in research that involves glutathione. Finally, this book will be a valuable resource for future glutathione-related research and can be considered as a textbook for graduate students and as a reference book for frontline researchers working on glutathione metabolism in relation to plant growth, development, stress responses, and stress tolerance.<br/></p>
Chemistry, biosynthesis and antioxidative function of glutathione in plants.- The roles of glutathione in the control of plant growth, development and abiotic stress tolerance.- Involvement of thiol-based mechanisms in plant growth and development.- Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses.- Triad of low molecular weight antioxidants (glutathione-ascorbate-α-tocopherol) in plant abiotic stress response and tolerance.- Glutathione as a key player in plant abiotic stress response and tolerance.- Measurement and meaning of cellular thiol:disufhide redox status in plants under stressful Conditions.- Regulatory and signaling role of GSH in modulating abiotic stress response and tolerance.- Transgenic plants over-expressing GSH biosynthetic genes and abiotic stress tolerance.- Exogenous glutathione mediated abiotic stress tolerance in plants.- Glutathione <i>S</i>-transferase and abiotic stress tolerance.- Glutathione dependent glyoxalase system and abiotic stress tolerance.- Hormonal regulation and GSH metabolism in plants in modulating abiotic stress tolerance.- Glutathione reductase and abiotic stress tolerance.- In vivo measurement of glutathione and their application in stress tolerance research.- Relationship between glutathione biosynthesis and stress defense gene expression in plants.- Involvement of GSH in photosynthesis and redox regulation of stress-responsive gene expression.- Glutathione transporter in plants.
<p><b>Mohammad  Anwar  Hossain</b> is a professor in the Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh. He received his B.Sc. in agriculture and M.S. in genetics and plant breeding from Bangladesh Agricultural University, Bangladesh. He also received an M.S. in agriculture from Kagawa University, Japan, in 2008 and a Ph.D. in abiotic stress physiology and molecular biology from Ehime University, Japan, in 2011 through a Monbukagakusho scholarship. In November 2015, he moved to Tokyo University, Japan, as a JSPS postdoctoral researcher to work on isolating low-phosphorus stress-tolerant genes/QTLs from rice. He has over 50 peer-reviewed publications on important aspects of plant physiology and breeding, plant nutrition, plant stress responses and tolerance mechanisms, and exogenous chemical priming-induced abiotic oxidative stress tolerance. He has edited five book volumes, including this one, published by CRC Press, Springer,and Elsevier. He is a professional member of the International Metabolomics Society, Bangladesh Society of Genetics and Plant Breeding, Bangladesh Association for Plant Tissue Culture and Biotechnology, and Seed Science Society of Bangladesh.<br/></p><p></p><p></p><p><b>Mohammad Golam Mostofa</b> is an associate professor of biochemistry and molecular biology at Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh. He received his B.Sc. and M.S. in biochemistry and molecular biology from the University of Dhaka, Bangladesh. He also obtained his M.S. in agriculture from Kagawa University, Japan, in 2012 and Ph.D. in plant and environmental sciences from Ehime University, Japan, in 2015 under a Monbukagakusho scholarship. His research focuses on plant physiology and biochemistry, abiotic stress tolerance in plants, oxidative stress responses, and crosstalk between phytohormones and signaling molecules under environmental stresses. His published works deal with the roles of signaling molecules in mitigating abiotic stresses in plants. He has authored over 25 peer-reviewed articles published in international journals. In September 2016, he joined the Signaling Pathway Research Unit at RIKEN Center for Sustainable Resource Science, Japan, as a JSPS postdoctoral researcher to work on the roles of the strigolactone phytohormone and its interactions with other signaling molecules under abiotic stresses in plants.<br/></p><p></p><p><b>Pedro Diaz-Vivancos</b> is an associate researcher in the Plant Breeding Department at CEBAS-CSIC (Murcia, Spain). He received his B.Sc. in biological sciences from the University of Murcia and his Ph.D. in 2007 in agricultural and food technology from the University of Cartagena (Spain). He has worked in 2008 and 2009 at Newcastle and Leeds Universities (UK) as a postdoctoral scientist on the role of glutathione in the regulation of cell proliferation and plant development. His main research interests are the study of the role of antioxidative metabolism in plant development and in plant stress responses, including the induction of tolerance against environmental stresses in plum plants by increasing their antioxidant capacity by genetic engineering. He has over 40 peer-reviewed publications and 2 book chapters.<br/></p><p><b>David  J.  Burritt</b> is an associate professor in the Department of Botany, the University of Otago, Dunedin, New Zealand. He received his B.Sc. and M.Sc. (Hons) in botany and his Ph.D. in plant biotechnology from the University of Canterbury, Christchurch, New Zealand. His research interests include oxidative stress and redox biology, plant-based foods and bioactive molecules, plant breeding and biotechnology, the cryopreservation of germplasm, and the stress biology of plants, animals, and algae. He has over 100 peer-reviewed publications and has edited 2 books for Springer and 1 for Elsevier.<br/></p><p></p><p><b>Masayuki Fujita</b> is a professor in the Department of Plant Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan. He received his B.Sc. in chemistry from Shizuoka University, Shizuoka, and his M.Agr. and Ph.D. in plant biochemistry from Nagoya University, Nagoya, Japan. His research interests include physiological, biochemical, and molecular biological responses based on secondary metabolism in plants under biotic (pathogenic fungal infection) and abiotic (salinity, drought, extreme temperatures, and heavy metals) stresses; phytoalexin, cytochrome P450, glutathione S-transferase, and phytochelatin; and redox reaction and antioxidants. He has over 150 peer-reviewed publications and has edited 2 books.<br/></p><p></p><b>Lam-Son  Phan  Tran</b> is head of the Signaling Pathway Research Unit at RIKEN Center for Sustainable Resource Science, Japan. He obtained his M.Sc. in biotechnology in 1994 and Ph.D. in biological sciences in 1997 from Szent Istvan University, Hungary. After doing his postdoctoral research at the National Food Research Institute (1999–2000) and the Nara Institute of Science and Technology of Japan (2001), in October 2001, he joined the Japan International Research Center for Agricultural Sciences to work on the functional analyses of transcription factors and osmosensors in Arabidopsis plants under environmental stresses. In August 2007, he moved to the University of Missouri-Columbia, USA, as a senior research scientist to coordinate a research team working to discover soybean genes to be used for genetic engineering of drought-tolerant soybean plants. His current research interests are the elucidation of the roles of phytohormones and their interactions in abiotic stress responses, as well as translational genomics of legume crops with the aim to enhance crop productivity under adverse environmental conditions. He has published over 110 peer-reviewed papers with more than 80 research and 30 review articles and contributed 8 book chapters to various book editions published by Springer, Wiley-Blackwell, and the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. He has also edited nine book volumes, including this one, for Springer and Elsevier.
Glutathione (γ-glutamyl-cysteinyl-glycine; GSH), a ubiquitously distributed sulfur containing antioxidant molecule, serves as a crucial player in regulating plant growth, development and abiotic stress tolerance. It is one of the most powerful low-molecular weight thiols and rapidly accumulates in plant and animal cells under stress. Recent in-depth studies on GSH homeostasis (synthesis, degradation, compartmentation, transport, and redox turnover) and the role of GSH in cell proliferation and abiotic stress tolerance have created opportunities for plant biologists to conduct research aimed at deciphering mechanisms associated with GSH-mediated plant growth and stress responses. GSH has also been proposed as a potential regulator of epigenetic gene regulation and so GSH might play important roles in the environmental regulation of gene expression in plants. The dynamic relationship between GSH and reactive oxygen species (ROS) has been well documented and GSH has been shown to participate in numerous metabolic and cell signaling processes, including protein synthesis and amino acid transport, DNA repair, and the control of cell division and programmed cell death. Two genes, <i>glutamylcysteine</i><i> </i><i>synthetase (GSH1</i>) and <i>glutathione synthetase (GSH2)</i>, are involved in GSH synthesis, and genetic manipulation of these enzymes interferes with cellular levels of GSH. Any fluctuations, an increase or decrease, in cellular GSH and oxidized GSH levels has profound effects on plant growth and development, as GSH is associated with the regulation of the cell cycle, redox signaling, enzymatic activities, defense gene expression, systemic acquired resistance and xenobiotic detoxification. Being a major component of ascorbate-glutathione (AsA-GSH) and glyoxalase (Gly) pathways, GSH helps to govern the level of plant oxidative stress by modulating ROS and methylglyoxal (MG) detoxification in plants. Although there has been significant progress made investigating the multiple roles of GSH in abiotic stress tolerance, many aspects of GSH-mediated abiotic stress responses and stress tolerance require additional research if GSH metabolism is to be manipulated to help develop abiotic stress-tolerant and nutritionally improved crop plants. This book will provide information the roles of GSH in plants that are directly or indirectly involved in many important metabolic processes and physiological functions, including GSH synthesis, compartmentation and transport, GSH-mediated ROS and MG detoxification, as well as GSH signaling functions in modulating plant growth, development and responses to abiotic stresses. The main objective of this volume is to promote the important role of GSH in plant biology by supplying basic, comprehensive and up to date information for advanced students, scholars and scientists interested in or already engaged in research that involves GSH. Finally, this book will be a valuable resource for future GSH-related research, and can be considered as a textbook for graduate students and as a reference book for front-line researchers working on the relationships between GSH and abiotic stress responses and toleranc​e.
International experts contribute to state-of-the-art studies on glutathione metabolism In-depth discussion on the mechanisms of glutathione-mediated physiological responses in plants Comprehensive reviews on the biochemical and molecular pathways of stress tolerance Includes supplementary material: sn.pub/extras
International experts contribute to state-of-the-art studies on glutathione metabolism<div>In-depth discussion on the mechanisms of glutathione-mediated physiological responses in plants<br/></div><div><div>Comprehensive reviews on the biochemical and molecular pathways of stress tolerance<br/></div></div>

Diese Produkte könnten Sie auch interessieren:

The Air Spora
The Air Spora
von: Maureen E. Lacey, Jonathan S. West
PDF ebook
223,63 €
Vegetables I
Vegetables I
von: Jaime Prohens-Tomás, Fernando Nuez
PDF ebook
287,83 €
Handbook of Poisonous and Injurious Plants
Handbook of Poisonous and Injurious Plants
von: Lewis S. Nelson, L.R. Goldfrank, Andrew Weil, Richard D. Shih, Michael J. Balick
PDF ebook
117,69 €