Details

Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices


Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices

Physical Interpretation and Applications
Springer Theses

von: Evdokiya Georgieva Kostadinova

96,29 €

Verlag: Springer
Format: PDF
Veröffentl.: 11.12.2018
ISBN/EAN: 9783030022129
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

<div>This book introduces the spectral approach to transport problems in infinite disordered systems characterized by Anderson-type Hamiltonians. The spectral approach determines (with probability one) the existence of extended states for nonzero disorder in infinite lattices of any dimension and geometry. Here, the author focuses on the critical 2D case, where previous numerical and experimental results have shown disagreement with theory. Not being based on scaling theory, the proposed method avoids issues related to boundary conditions and provides an alternative approach to transport problems where interaction with various types of disorder is considered.</div><div><br></div><div>Beginning with a general overview of Anderson-type transport problems and their relevance to physical systems, it goes on to discuss in more detail the most relevant theoretical, numerical, and experimental developments in this field of research. The mathematical formulation of the innovative spectral approach is introduced together with a physical interpretation and discussion of its applicability to physical systems, followed by a numerical study of delocalization in the 2D disordered honeycomb, triangular, and square lattices. Transport in the 2D honeycomb lattice with substitutional disorder is investigated employing a spectral analysis of the quantum percolation problem. Next, the applicability of the method is extended to the classical regime, with an examination of diffusion of lattice waves in 2D disordered complex plasma crystals, along with discussion of proposed future developments in the study of complex transport problems using spectral theory.</div><div><br></div>
Chapter1. Introduction.- Chapter2. Theoretical Background.- Chapter3. Spectral Approach.- Chapter4. Delocalization in 2D Lattices of Various Geometries.- Chapter5. Transport in the Two-Dimentional Honeycomb Lattice with Substitutional Disorder.- Chapter6. Transport in 2D Complex Plasma Crystals.- Chapter7. Conclusions.
Evdokiya Georgieva Kostadinova is a research assistant professor in the Center for Astrophysics, Space Physics & Engineering Research at Baylor University. She received her PhD from Baylor University in 2017.&nbsp;
This thesis introduces the spectral approach to transport problems in infinite disordered systems characterized by Anderson-type Hamiltonians. The spectral approach determines (with probability one) the existence of extended states for nonzero disorder in infinite lattices of any dimension and geometry. Here, the author focuses on the critical 2D case, where previous numerical and experimental results have shown disagreement with theory. Not being based on scaling theory, the proposed method avoids issues related to boundary conditions and provides an alternative approach to transport problems where interaction with various types of disorder is considered.<p></p>

Beginning with a general overview of Anderson-type transport problems and their relevance to physical systems, it goes on to discuss in more detail the most relevant theoretical, numerical, and experimental developments in this field of research. The mathematical formulation of the innovative spectral approach is introduced together with a physical interpretation and discussion of its applicability to physical systems, followed by a numerical study of delocalization in the 2D disordered honeycomb, triangular, and square lattices. Transport in the 2D honeycomb lattice with substitutional disorder is investigated employing a spectral analysis of the quantum percolation problem. Next, the applicability of the method is extended to the classical regime, with an examination of diffusion of lattice waves in 2D disordered complex plasma crystals, along with discussion of proposed future developments in the study of complex transport problems using spectral theory.<p></p>
Nominated as an outstanding PhD thesis by Baylor University Gives an accessible introduction to Anderson-type transport problems Presents an innovative spectral approach to wave propagation in two dimensional systems Develops applications to 2D disordered complex plasma crystals

Diese Produkte könnten Sie auch interessieren:

Introduction to Focused Ion Beams
Introduction to Focused Ion Beams
von: Lucille A. Giannuzzi, Lucille A. North Carolina State University
PDF ebook
128,39 €
Advanced Magnetic Nanostructures
Advanced Magnetic Nanostructures
von: D.J. Sellmyer, Ralph Skomski
PDF ebook
149,79 €
High Thermal Conductivity Materials
High Thermal Conductivity Materials
von: Subhash L. Shinde, Jitendra Goela
PDF ebook
149,79 €