Details

The Chemistry and Biology of Volatiles


The Chemistry and Biology of Volatiles


2. Aufl.

von: Andreas Herrmann

121,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 15.06.2011
ISBN/EAN: 9781119956983
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<i>"Coming to a conclusion, this wonderful, informative and very interesting book presents an excellent overview of small volatile organic compounds and their role in our life and environment. Really fascinating is the entirety of scientific disciplines which were addressed by this book."</i> –Flavour and Fragrance Journal, 2011 <p><i>"… this book deserves to be a well-used reference in the library of any laboratory specialising in VOC".</i> –Chemistry World, 2011<br /> </p> <p>Volatile compounds are molecules with a relatively low molecular weight allowing for an efficient evaporation into the air. They are found in many areas of our everyday-life: they are responsible for the communication between species such as plants, insects or mammals; they serve as flavours or fragrances in many food products or perfumed consumer articles; and they play an important role in atmospheric chemistry.</p> <p>This book takes an interdisciplinary approach to volatile molecules. Review-style introductions to the main topics in volatile chemistry and biology are provided by international experts, building into a broad overview of this fascinating field.<br /> <br /> <b>Topics covered include:</b></p> <ul> <li>The structural variety of volatile compounds</li> <li>Biogeneration of volatiles</li> <li>Synthesis of natural and non-natural volatiles</li> <li>Analysis of volatiles</li> <li>Volatile compounds as semiochemicals in plant-plant or plant-insect interactions</li> <li>Volatiles in pest control</li> <li>Pheromones and the influence of volatiles on mammals</li> <li>Olfaction and human perception</li> <li>Volatiles as fragrances</li> <li>The generation of flavours and food aroma compounds</li> <li>Stabilisation and controlled release of volatiles</li> <li>The impact of volatiles on the environment and the atmosphere</li> </ul>
<p>Foreword xiii</p> <p>List of Contributors xv</p> <p>Acknowledgements xvii</p> <p>Abbreviations xix</p> <p><b>1 Volatiles – An Interdisciplinary Approach 1<br /> </b><i>Andreas Herrmann</i></p> <p>1.1 Introduction 1</p> <p>1.2 Geraniol – A Typical Example 2</p> <p>1.3 Conclusion 8</p> <p>References 8</p> <p><b>2 Biosynthesis and Emission of Isoprene, Methylbutanol and Other Volatile Plant Isoprenoids 11<br /> </b><i>Hartmut K. Lichtenthaler</i></p> <p>2.1 Introduction 11</p> <p>2.2 Plant Isoprenoids 12</p> <p>2.3 Two IPP-Yielding Pathways in Plants 15</p> <p>2.4 Prenyl Chain Formation and Elongation 16</p> <p>2.5 Compartmentation of Plant Isoprenoid Biosynthesis 16</p> <p>2.6 The Enzyme Steps of the Plastidic DOXP/MEP Pathway of IPP Formation 17</p> <p>2.7 Cross-Talk Between the Two IPP Biosynthesis Pathways 19</p> <p>2.8 Biosynthesis and Emission of Volatile Isoprene at High Irradiance 22</p> <p>2.8.1 Regulation of Isoprene Emission 25</p> <p>2.9 Inhibition of Isoprene Biosynthesis 26</p> <p>2.9.1 Fosmidomycin and 5-Ketoclomazone 26</p> <p>2.9.2 Diuron 27</p> <p>2.10 Inhibition of Carotenoid and Chlorophyll Biosynthesis by Fosmidomycin and 5-Ketoclomazone 27</p> <p>2.11 Biosynthesis and Emission of Methylbutenol at High Irradiance 28</p> <p>2.12 Source of Pyruvate for Isoprene and Methylbutenol Biosynthesis 29</p> <p>2.13 Branching Point of DOXP/MEP Pathway with Other Metabolic Chloroplast Pathways 30</p> <p>2.14 Is There a Physiological Function of Isoprene and MBO Emission? 31</p> <p>2.15 Biosynthesis and Emission of Monoterpenes, Sesquiterpenes and Diterpenes 33</p> <p>2.15.1 Monoterpenes 35</p> <p>2.15.2 Diterpenes 36</p> <p>2.15.3 Sesquiterpenes 36</p> <p>2.16 Some General Remarks on the Regulation of Terpene Biosynthesis in Plants 36</p> <p>2.17 Volatile Terpenoids as Aroma Compounds of Wine 37</p> <p>2.18 Function of Terpenes in Plant Defence 38</p> <p>2.19 Conclusion 38</p> <p>Acknowledgements 39</p> <p>References 40</p> <p><b>3 Analysis of the Plant Volatile Fraction 49<br /> </b><i>Patrizia Rubiolo, Barbara Sgorbini, Erica Liberto, Chiara Cordero and Carlo Bicchi</i></p> <p>3.1 Introduction 49</p> <p>3.2 Sample Preparation 50</p> <p>3.2.1 ‘Liquid’ Phase Sampling 51</p> <p>3.2.2 Headspace Sampling 51</p> <p>3.2.3 Headspace–Solid Phase Microextraction 52</p> <p>3.2.4 In-Tube Sorptive Extraction 54</p> <p>3.2.5 Headspace Sorptive Extraction 55</p> <p>3.2.6 Static and Trapped Headspace 56</p> <p>3.2.7 Solid-Phase Aroma Concentrate Extraction 56</p> <p>3.2.8 Headspace Liquid-Phase Microextraction 56</p> <p>3.2.9 Large Surface Area High Concentration Capacity Headspace Sampling 59</p> <p>3.3 Analysis 59</p> <p>3.3.1 Fast-GC and Fast-GC-qMS EO Analysis 61</p> <p>3.3.2 Qualitative Analysis 65</p> <p>3.3.3 Quantitative Analysis 66</p> <p>3.3.4 Enantioselective GC 70</p> <p>3.3.5 Multidimensional GC Techniques 75</p> <p>3.4 Further Developments 76</p> <p>3.5 Conclusion 85</p> <p>Acknowledgements 87</p> <p>References 87</p> <p><b>4 Plant Volatile Signalling: Multitrophic Interactions in the Headspace 95<br /> </b><i>Andre Kessler and Kimberly Morrell</i></p> <p>4.1 Introduction 95</p> <p>4.2 The Specificity and Complexity of Herbivore-Induced VOC Production 97</p> <p>4.2.1 Plant Endogenous Wound Signalling 99</p> <p>4.2.2 Herbivore-Derived Elicitors of VOC Emission 102</p> <p>4.3 Ecological Consequences of VOC Emission 104</p> <p>4.3.1 Within-Plant Defence Signalling 104</p> <p>4.3.2 Herbivore-Induced VOC Emission as Part of a Metabolic Reconfiguration of the Plant 105</p> <p>4.3.3 Herbivores Use VOCs to Select Host Plants 107</p> <p>4.3.4 VOCs as Indirect Defences Against Herbivores 108</p> <p>4.3.5 VOCs in Plant–Plant Interactions 111</p> <p>4.4 Conclusion 112</p> <p>Acknowledgements 114</p> <p>References 114</p> <p><b>5 Pheromones in Chemical Communication 123<br /> </b><i>Kenji Mori</i></p> <p>5.1 Introduction 123</p> <p>5.1.1 Definition of Pheromones 123</p> <p>5.1.2 Classification of Pheromones 123</p> <p>5.2 History of Pheromone Research 125</p> <p>5.3 Research Techniques in Pheromone Science 127</p> <p>5.3.1 The Collecting of Pheromones 127</p> <p>5.3.2 Bioassay-Guided Purification 128</p> <p>5.3.3 Structure Determination and Synthesis 128</p> <p>5.3.4 Field Bioassay 129</p> <p>5.3.5 Structure Elucidation of the Male-Produced Aggregation Pheromone of the Stink Bug Eysarcoris lewisi – A Case Study 129</p> <p>5.4 Structural Diversity Among Pheromones 132</p> <p>5.5 Complexity of Multicomponent Pheromones 137</p> <p>5.6 Stereochemistry and Pheromone Activity 139</p> <p>5.6.1 Only a Single Enantiomer is Bioactive and its Opposite Enantiomer Does Not Inhibit the Response to the Active Isomer 139</p> <p>5.6.2 Only One Enantiomer is Bioactive, and its Opposite Enantiomer Inhibits the Response to the Pheromone 139</p> <p>5.6.3 Only One Enantiomer is Bioactive, and its Diastereomer Inhibits the Response to the Pheromone 139</p> <p>5.6.4 The Natural Pheromone is a Single Enantiomer, and its Opposite Enantiomer or Diastereomer is Also Active 140</p> <p>5.6.5 The Natural Pheromone is a Mixture of Enantiomers or Diastereomers, and Both of the Enantiomers, or All of the Diastereomers are Separately Active 141</p> <p>5.6.6 Different Enantiomers or Diastereomers are Employed by Different Species 141</p> <p>5.6.7 Both Enantiomers are Necessary for Bioactivity 141</p> <p>5.6.8 One Enantiomer is More Active Than the Other, but an Enantiomeric or Diastereomeric Mixture is More Active Than the Enantiomer Alone 141</p> <p>5.6.9 One Enantiomer is Active on Males, While the Other is Active on Females 142</p> <p>5.6.10 Only the meso-Isomer is Active 142</p> <p>5.7 Pheromones With Kairomonal Activities 142</p> <p>5.8 Mammalian Pheromones 143</p> <p>5.9 Invention of Pheromone Mimics 145</p> <p>5.10 Conclusion 147</p> <p>Acknowledgements 147</p> <p>References 147</p> <p><b>6 Use of Volatiles in Pest Control 151<br /> </b><i>J. Richard M. Thacker and Margaret R. Train</i></p> <p>6.1 Introduction 151</p> <p>6.2 Repellents (DEET, Neem, Essential Oils) 151</p> <p>6.3 Volatile Synthetic Chemicals and Fumigants 154</p> <p>6.4 Pheromones 158</p> <p>6.5 Volatile Allelochemicals 165</p> <p>6.6 Plant Volatiles and Behavioural Modification of Beneficial Insects 166</p> <p>6.7 Concluding Comments 167</p> <p>References 168</p> <p><b>7 Challenges in the Synthesis of Natural and Non-Natural Volatiles 173<br /> </b><i>Anthony A. Birkbeck</i></p> <p>7.1 Introduction – The Art of Organic Synthesis 173</p> <p>7.2 Overcoming Challenges in the Small-Scale Synthesis of Natural Volatile Compounds 174</p> <p>7.2.1 D,L-Caryophyllene (1964) 174</p> <p>7.2.2 b-Vetivone (1973) 175</p> <p>7.3 Overcoming Challenges in the Large-Scale Synthesis of Nature Identical and Non-Natural Molecules 176</p> <p>7.3.1 (Z)-3-Hexenol 176</p> <p>7.3.2 Citral 177</p> <p>7.3.3 (–)-Menthol 179</p> <p>7.3.4 Habanolide 180</p> <p>7.4 Remaining Challenges in the Large-Scale Synthesis of Natural and Non-Natural Volatiles 180</p> <p>7.5 Design and Synthesis of Novel Odorants and Potential Industrial Routes to a Natural Product 182</p> <p>7.5.1 Cassis (Blackcurrant) 182</p> <p>7.5.2 Patchouli 184</p> <p>7.5.3 Musk 187</p> <p>7.5.4 Sandalwood 189</p> <p>7.6 Other Challenges 193</p> <p>7.7 Conclusion 193</p> <p>Acknowledgements 194</p> <p>Dedication 195</p> <p>References 195</p> <p><b>8 The Biosynthesis of Volatile Sulfur Flavour Compounds 203<br /> </b><i>Meriel G. Jones</i></p> <p>8.1 Introduction: Flavours as Secondary Metabolites 203</p> <p>8.2 Sulfur in Plant Biology 204</p> <p>8.3 Sulfur Compounds as Flavour Volatiles 205</p> <p>8.4 The Alk(en)yl Cysteine Sulfoxide Flavour Precursors 206</p> <p>8.5 Biosynthesis of the Flavour Precursors of Allium 207</p> <p>8.5.1 The Biosynthesis of Allium Flavour Precursors via g-Glutamyl Peptides 208</p> <p>8.5.2 The Biosynthesis of Allium Flavour Precursors via Cysteine Synthases 209</p> <p>8.6 Formation of Volatiles from CSOs 210</p> <p>8.6.1 S-Methyl-L-cysteine sulfoxide 210</p> <p>8.6.2 Release of the Allium CSOs 211</p> <p>8.7 The Allium Flavour Volatiles 212</p> <p>8.8 The Enzyme Alliinase 213</p> <p>8.9 The Enzyme Lachrymatory Factor Synthase 214</p> <p>8.10 The Biological Roles of the Flavour Precursors 215</p> <p>8.11 The Glucosinolate Flavour Precursors 216</p> <p>8.12 GS and Their Biosynthetic Pathways 216</p> <p>8.13 Release of Volatile GS Hydrolysis Products 218</p> <p>8.14 The Biological Role of Glucosinolates 220</p> <p>8.15 Application of Transgenic Technology to Applied Aspects of GS Biosynthesis 222</p> <p>8.16 Volatile Sulfur Compounds from Other Plants 222</p> <p>8.16.1 Complex Organic Sulfur Volatiles 222</p> <p>8.16.2 Simple Sulfur Volatiles 223</p> <p>8.16.3 Hydrogen Sulfide 223</p> <p>8.16.4 Methanethiol 224</p> <p>8.17 Conclusion 224</p> <p>References 224</p> <p><b>9 Thermal Generation of Aroma-Active Volatiles in Food 231<br /> </b><i>Christoph Cerny</i></p> <p>9.1 Introduction 231</p> <p>9.2 The Maillard Reaction 233</p> <p>9.2.1 The Amadori Rearrangement 234</p> <p>9.2.2 Deoxyosones 235</p> <p>9.2.3 Retro-Aldolization 235</p> <p>9.3 Formation of Aroma Compounds in the Later Stages of the Maillard Reaction 237</p> <p>9.3.1 2-Furfurylthiol 237</p> <p>9.3.2 4-Hydroxy-2,5-dimethyl-3(2H)-furanone 239</p> <p>9.3.3 Alkyl and Alkenylpyrazines 239</p> <p>9.3.4 2-Acetyl-1-pyrroline 241</p> <p>9.4 The Strecker Degradation 241</p> <p>9.5 Caramelization 244</p> <p>9.6 Thiamin Degradation 246</p> <p>9.7 Ferulic Acid Degradation 246</p> <p>9.8 Fat Oxidation 247</p> <p>9.9 Conclusion 250</p> <p>References 250</p> <p><b>10 Human Olfactory Perception 253<br /> </b><i>Alan Gelperin</i></p> <p>10.1 Introduction 253</p> <p>10.2 Historical Perspective on Olfactory Perception 254</p> <p>10.3 Human Olfactory Pathway 255</p> <p>10.4 Functional Studies in Human Subjects 256</p> <p>10.5 Functional Studies in Brain-Damaged Subjects 259</p> <p>10.6 Single Odorants, Binary Mixtures and Complex Odour Objects 259</p> <p>10.7 Olfactory Versus Trigeminal Odorant Identification 262</p> <p>10.8 Orthonasal Versus Retronasal Odour Perception 263</p> <p>10.9 Specific Anosmias 264</p> <p>10.10 MHC-Correlated Odour Preferences in Human Subjects 265</p> <p>10.11 Odour Deprivation and Odour Perception 266</p> <p>10.12 Age-Related Decline in Olfactory Perception 267</p> <p>10.13 New Neurons in Adult Brains 268</p> <p>10.14 Epidemiological Studies of Human Olfaction 268</p> <p>10.15 Active Sampling and Olfactory Perception 269</p> <p>10.16 Human Olfactory Imagery 270</p> <p>10.17 Top-Down Influences on Olfactory Perception 271</p> <p>10.18 Reproductive State and Olfactory Sensitivity 272</p> <p>10.19 Olfaction, Hunger and Satiety 273</p> <p>10.20 Odour Perception Bias by Odour Names 274</p> <p>10.21 Olfaction and Disease States 275</p> <p>10.22 Prenatal and Postnatal Influences on Infant Odour/Flavour Preferences 276</p> <p>10.23 Future Directions 277</p> <p>Acknowledgements 277</p> <p>References 278</p> <p><b>11 Perfumery – The Wizardry of Volatile Molecules 291<br /> </b><i>Christophe Laudamiel</i></p> <p>11.1 The Big Picture 291</p> <p>11.2 Wizardry No. 1: Full Holograms Create Real Emotions 292</p> <p>11.3 Volatiles Need a Language Wizard 296</p> <p>11.4 Wizardry No. 2: The Perfumer in the Jungle of Volatiles to Create Emotions 298</p> <p>11.5 Wizardry No. 3: End Results Are Music to the Nose 303</p> <p>References 304</p> <p><b>12 Microencapsulation Techniques for Food Flavour 307<br /> </b><i>Youngjae Byun, Young Teck Kim, Kashappa Goud H. Desai and Hyun Jin Park</i></p> <p>12.1 Demands 307</p> <p>12.2 Microencapsulation in the Food Industry 307</p> <p>12.3 Techniques and Materials for Flavour Microencapsulation 308</p> <p>12.3.1 Spray Drying 308</p> <p>12.3.2 Extrusion 312</p> <p>12.3.3 Cyclodextrin Inclusion Complexes 314</p> <p>12.3.4 Helical Inclusion Complexes 316</p> <p>12.3.5 Fluidized Bed Coating 318</p> <p>12.3.6 Top Spray Fluidized Bed Coating 318</p> <p>12.3.7 Bottom Spray System 318</p> <p>12.3.8 Wurster System 320</p> <p>12.3.9 Tangential Spray or Rotary Fluidized Bed Coating 320</p> <p>12.3.10 Coacervation 320</p> <p>12.3.11 Double or Multiple Emulsion with Freeze Drying 321</p> <p>12.3.12 Co-Crystallization 322</p> <p>12.3.13 Spray Chilling and Spray Cooling 322</p> <p>12.3.14 Supercritical Fluids 323</p> <p>12.3.15 Other Techniques 323</p> <p>12.4 Conclusion and Future Trends 325</p> <p>References 326</p> <p><b>13 Profragrances and Properfumes 333<br /> </b><i>Andreas Herrmann</i></p> <p>13.1 Introduction 333</p> <p>13.2 Release of Alcohols 335</p> <p>13.2.1 Enzymatic Hydrolysis 335</p> <p>13.2.2 Neighbouring-Group-Assisted, Non-Enzymatic Hydrolysis 340</p> <p>13.3 Release of Carbonyl Derivatives 346</p> <p>13.3.1 Oxidations 346</p> <p>13.3.2 Reversible Systems 350</p> <p>13.3.3 Retro 1,4-Additions 354</p> <p>13.4 Profragrance and Properfume Strategies 356</p> <p>13.4.1 Performance and Cost Efficiency 356</p> <p>13.4.2 Stability 357</p> <p>13.5 Conclusion 357</p> <p>Acknowledgements 358</p> <p>References 358</p> <p><b>14 Reactions of Biogenic Volatile Organic Compounds in the Atmosphere 363<br /> </b><i>Russell K. Monson</i></p> <p>14.1 Introduction 363</p> <p>14.2 The Relative Importance of Anthropogenic Versus Biogenic VOC Emissions to Atmospheric Chemistry 364</p> <p>14.3 Overview of BVOC Oxidation 365</p> <p>14.4 The Types of Emitted BVOCs and General Roles in Atmospheric Chemistry 370</p> <p>14.5 Gas Phase Oxidation of BVOCs 372</p> <p>14.6 Gas Phase Chemistry of BVOCs in Urban and Suburban Airsheds 374</p> <p>14.7 Gas Phase Chemistry Within and Above Forests 375</p> <p>14.8 BVOC Emissions and SOA Formation 377</p> <p>14.9 Conclusion 381</p> <p>References 381</p> <p>Index 389</p>
"Coming to a conclusion, this wonderful, informative and very interesting book presents an excellent overview of small volatile organic compounds and their role in our life and environment. Really fascinating is the entirety of scientific disciplines which were addressed by this book." (Flavour and Fragrance Journal, 2011)<br /> <br /> <p>"In spite of its few shortcomings, this book deserves to be a well-used reference in the library of any laboratory specialising in VOC". (Chemistry World, 1 May 2011)</p> <p>"The Chemistry and Biology of Volatiles takes an interdisciplinary approach to volatile molecules". (Small Business VoIP, 14 December 2010)</p>
<b>Dr. Andreas Herrmann</b> is a research chemist at Firmenich SA, an international flavour and fragrance company, in Genève (Switzerland), working on the development of new fragrance delivery systems. He has published a series of research papers on the chemical release of volatiles under mild reaction conditions. He is the author or co-author of about 30 scientific publications and 10 international patent applications.
Volatile compounds are molecules with a relatively low molecular weight allowing for efficient evaporation into the air. They are found in many areas of everyday life: they are responsible for the communication between species such as plants, insects or mammals; they serve as flavours or fragrances in many food products or perfumed consumer articles and they play an important role in atmospheric chemistry. <p><i>The Chemistry and Biology of Volatiles</i> takes an interdisciplinary approach to volatile molecules. Review-style introductions to the main topics in volatile chemistry and biology are provided by international experts, building into a broad overview of this fascinating field. Topics covered include:</p> <ul type="disc"> <li>volatiles – an interdisciplinary approach</li> <li>biosynthesis and emission of isoprene, methylbutanol and other volatile plant isoprenoids</li> <li>analysis of the plant volatile fraction</li> <li>plant volatile signalling: multitrophic interactions in the headspace</li> <li>pheromones in chemical communication</li> <li>use of volatiles in pest control</li> <li>challenges in the synthesis of natural and non-natural volatiles</li> <li>the biosynthesis of volatile sulphur flavour compounds</li> <li>thermal generation of aroma-active volatiles in food</li> <li>human olfactory perception</li> <li>perfumery – the wizardry of volatile molecules</li> <li>microencapsulation techniques for food flavour</li> <li>profragrances and properfumes</li> <li>reactions of biogenic volatile organic compounds in the atmosphere</li> </ul> <p><i>The Chemistry and Biology of Volatiles</i> is an essential overview of this important field for students and researchers in organic and bioorganic chemistry, biochemistry, flavour and fragrance research, pest control, olfactory perception, and atmospheric chemistry.</p>

Diese Produkte könnten Sie auch interessieren:

Oxidation of Alcohols to Aldehydes and Ketones
Oxidation of Alcohols to Aldehydes and Ketones
von: Gabriel Tojo, Marcos I. Fernandez
PDF ebook
96,29 €
Metal-Catalysed Reactions of Hydrocarbons
Metal-Catalysed Reactions of Hydrocarbons
von: Geoffrey C. Bond
PDF ebook
96,29 €